93 research outputs found

    Working memory and children's mathematical skills

    Get PDF
    Previous studies which examined the relationship between working memory (WM) ability and children's mathematics performance typically measured mathematics ability as a general skill (e.g. Gathercole & Pickering, 2000a) or mental arithmetic ability (e.g. Adams & Hitch, 1997), used number- or digit-based WM assessments and did not control for individual differences in a child's general ability (e.g. intelligence). The aim of this thesis was to extend this research to investigate the associations between the components of the tripartite WM model (e.g. Baddeley, 1986) and a range of mathematical skills in 7-/8- and 9-/10-year-olds using non-digit- based WM assessments, controlling for a measure of general ability. The relationship between WM ability and children's curriculum-based mathematics performance was investigated using a correlational design in Chapters 3 and 4. Assessments, developed in Chapter 2, were used to measure four mathematical skills outlined in the National Curriculum for England. The results indicated that central executive and visuo-spatial sketchpad, but not phonological loop, scores predicted unique variance in performance across all four mathematical skills, even when controlling for NVIQ. Furthermore, both WM abilities were found to predict Key Stage 2 mathematics achievement one year after initial testing (Chapter 8).The same methodology was used in Chapters 6 and 7 to explore the relationship between WM ability and children's performance-related mathematics abilities (see chapter 5). All three components of WM predicted unique variance in these mathematical skills, but a markedly distinct pattern of associations was revealed between the two age groups. In particular, the data implicated a stronger role for the visuo-spatial sketchpad in the younger children's mathematics. The role of visuo-spatial WM in children's mathematics was explored further in Chapter 9 where a discrepancy definition was applied to identify children with poor mathematics or poor visuo-spatial abilities. The data provided an initial indication that normal visuo-spatial sketchpad development may be important for normal mathematics development. The overarching conclusion is that WM, and the central executive and visuo- spatial sketchpad in particular, may support the development of early mathematical ability. The practical and theoretical implications of these findings are considered

    Following instructions in a dual-task paradigm: Evidence for a temporary motor store in working memory.

    Get PDF
    Evidence from dual-task studies suggests that working memory supports the retention and implementation of verbal instructions. One key finding that is not readily accommodated by existing models of working memory is that participants are consistently more accurate at physically performing rather than verbally repeating a sequence of commands. This action advantage has no obvious source within the multi-component model of working memory and has been proposed to be driven by an as yet undetected limited-capacity store dedicated to the temporary maintenance of spatial, motoric, and temporal features of intended movements. To test this hypothesis, we sought to selectively disrupt the action advantage with concurrent motor suppression. In three dual-task experiments, young adults' immediate memory for sequences of spoken instructions was assessed by both action-based and spoken recall. In addition to classic interference tasks known to tax the phonological loop and central executive, motor suppression tasks designed to impair the encoding and retention of motoric representations were included. These required participants to produce repetitive sequences of either fine motor gestures (Experiment 1, N = 16) or more basic ones (Experiments 2, N = 16, and 3, N = 16). The benefit of action-based recall was reduced following the production of basic gestures but remained intact under all other interference conditions. These results suggest that the mnemonic advantage of enacted recall depends on a cognitive system dedicated to the temporary maintenance of motoric representations of planned action sequences

    Cognitive difficulties following adversity are not related to mental health: findings from the ABCD study

    Get PDF
    Early life adversity is associated with differences in cognition and mental health that can impact on daily functioning. This study uses a hybrid machine learning approach that combines random forest classification with hierarchical clustering to clarify whether there are cognitive differences between individuals who have experienced moderate-to-severe adversity relative to those have not experienced adversity, to explore whether different forms of adversity are associated with distinct cognitive alterations and whether these such alterations are related to mental health using data from the ABCD study (n=5,955). Cognitive measures spanning language, reasoning, memory, risk-taking, affective control, and reward-processing predicted whether a child had a history of adversity with reasonable accuracy (67%), and with good specificity and sensitivity (>70%). Two subgroups were identified within the adversity group and two within the no adversity group that were distinguished by cognitive ability (low vs high). There was no evidence for specific associations between the type of adverse exposure and cognitive profile. Worse cognition predicted lower levels of mental health in unexposed children. However, while children who experience adversity had elevated mental health difficulties, their mental health did not differ as a function of cognitive ability, thus providing novel insight into the heterogeneity of psychiatric risk

    Taking working memory training from the laboratory into schools

    Get PDF
    Working memory skills have been shown to be enhanced by adaptive training in several randomised controlled trials. Here, two field trials were conducted in which teachers administered working memory training to their own pupils in school. Twenty-two children aged 8–9 years participated in Trial 1. In Trial 2, 50 children aged 9–11 years with the lowest academic performance completed training. They were matched with a group of 50 children who were not trained. Following training, children in Trial 1 improved significantly in both trained and untrained working memory tasks, with effect sizes comparable to those reported in research studies. Improvements on the trained tasks in Trial 2 were comparable, and training was associated with significantly greater progress at school across the academic year in maths and English. These findings indicate that teacher-administered training leads to generalised and robust gains in working memory and educationally significant gains in academic performance

    Neurodiversity: Towards an interdisciplinary approach

    Get PDF
    The concept of neurodiversity is exerting a powerful influence in academia and the real world. There has been a sharp increase in publications referring to ‘neurodiversity’ since 2000 (Figure 1), many people now identify as ‘neurodivergent’, and there are worldwide public initiatives such as Neurodiversity Celebration Week that actively promote the concept. In light of this growth, we are pleased to announce the launch of Neurodiversity – a new journal that will focus on interdisciplinary approaches to improving understanding of neurodiversity and its application in real-world settings. Following in the spirit of the emergence of the neurodiversity concept from the autism rights movement, Neurodiversity represents an exciting new addition to Sage academic journals, like Autism, dedicated to advancing understanding and improving the lives of neurodivergent people

    Protocol for a transdiagnostic study of children with problems of attention, learning and memory (CALM).

    Get PDF
    BACKGROUND: A substantial proportion of the school-age population experience cognitive-related learning difficulties. Not all children who struggle at school receive a diagnosis, yet their problems are sufficient to warrant additional support. Understanding the causes of learning difficulties is the key to developing effective prevention and intervention strategies for struggling learners. The aim of this project is to apply a transdiagnostic approach to children with cognitive developmental difficulties related to learning to discover the underpinning mechanisms of learning problems. METHODS: A cohort of 1000 children aged 5 to 18 years is being recruited. The sample consists of 800 children with problems in attention, learning and / memory, as identified by a health or educational professional, and 200 typically-developing children recruited from the same schools as those with difficulties. All children are completing assessments of cognition, including tests of phonological processing, short-term and working memory, attention, executive function and processing speed. Their parents/ carers are completing questionnaires about the child's family history, communication skills, mental health and behaviour. Children are invited for an optional MRI brain scan and are asked to provide an optional DNA sample (saliva). Hypothesis-free data-driven methods will be used to identify the cognitive, behavioural and neural dimensions of learning difficulties. Machine-learning approaches will be used to map the multi-dimensional space of the cognitive, neural and behavioural measures to identify clusters of children with shared profiles. Finally, group comparisons will be used to test theories of development and disorder. DISCUSSION: Our multi-systems approach to identifying the causes of learning difficulties in a heterogeneous sample of struggling learners provides a novel way to enhance our understanding of the common and complex needs of the majority of children who struggle at school. Our broad recruitment criteria targeting all children with cognitive learning problems, irrespective of diagnoses and comorbidities, are novel and make our sample unique. Our dataset will also provide a valuable resource of genetic, imaging and cognitive developmental data for the scientific community

    Language Problems and ADHD Symptoms: How Specific Are the Links?

    Get PDF
    Symptoms of inattention and hyperactivity frequently co-occur with language difficulties in both clinical and community samples. We explore the specificity and strength of these associations in a heterogeneous sample of 254 children aged 5 to 15 years identified by education and health professionals as having problems with attention, learning and/or memory. Parents/carers rated pragmatic and structural communication skills and behaviour, and children completed standardised assessments of reading, spelling, vocabulary, and phonological awareness. A single dimension of behavioural difficulties including both hyperactivity and inattention captured behaviour problems. This was strongly and negatively associated with pragmatic communication skills. There was less evidence for a relationship between behaviour and language structure: behaviour ratings were more weakly associated with the use of structural language in communication, and there were no links with direct measures of literacy. These behaviour problems and pragmatic communication difficulties co-occur in this sample, but impairments in the more formal use of language that impact on literacy and structural communication skills are tied less strongly to behavioural difficulties. One interpretation is that impairments in executive function give rise to both behavioural and social communication problems, and additional or alternative deficits in other cognitive abilities impact on the development of structural language skills

    Feature coding dataset for trained and untrained working memory tasks in randomized controlled trials of working memory training.

    Get PDF
    The data presented in this article are produced as part of the original research article entitled "Working memory training involves learning new skills" (Gathercole, Dunning, Holmes & Norris, in press). This article presents a dataset of coded features for pairs of trained and untrained working memory (WM) tasks from randomized controlled trials of WM training with active control groups. Feature coding is provided for 113 untrained WM tasks each paired with the most similar task in the training program, taken from 23 training studies. A spreadsheet provides summary information for each task pair, its transfer effect size, and coding of the following features for each task: stimulus category, stimulus domain, stimulus modality, response modality, and recall paradigm
    • …
    corecore